
Workshop on New Visions for Software Design and Productivity
18-19 April, NSF, 2001

Software for the Real World

Don Winter

Martin Feather, Gabor Karsai, Patrick Lardieri, Cleve Moler, Edward Lee



Where we are Today
In software today:

Accidental complexity
Unpredictability
Uncomposability
Brittleness
Not good at interacting with the real world

We are stuck in a “lines of code” view of SW
Scaling this by putting more people onto it
Lose understanding of the system as a whole
Separation of specification from construction



The Problem

In 10 years, the world is going to be a different 
place… there are going to be computers 
everywhere.

If we keep developing software the way we do 
today, then the world is going to be a very 
dangerous place…

or, technology infusion will slow… Your car will 
not be drive-by-wire, and you’ll still be stuck in 
traffic.



Modeling “Languages”
Lacking modeling “languages” for humans to

realize complex functionality 
understand the design
formulate the questions
predict the behavior

The issue is not lines of code
“model” or “design” not “specification”

Invest in:
Modeling “languages” for systems
finding the useful abstractions
computational systems theory
composable abstractions
expressing time, concurrency, power, etc.



Composing Systems
Lacking systematic methods for composing systems

component frameworks
composition semantics
on-the-fly composition, admission control
legacy component integration

Invest in:
semantic frameworks and theories
methods and tools
experimental testbeds & challenge problems
reference implementations
defining architectural frameworks
strategies for distribution, partitioning
strategies for controlling granularity and modularity



Transformations
Lacking theory of transformations between abstractions

relationships between abstractions
generators (transformers)
multi-view abstractions
model abstractors (create reduced-order models)
abstractions of physical environments
connection with HCSS: verifiable transformations

Invest in:
open generator infrastructure (methods, libraries)
theories of generators
methods for correct by construction transformers
parametrized transformers



Legacy

Lacking methods for dealing with legacy
how to incrementally modernize systems
lacking methods for integrating new with old 

What to invest in:
componentizing legacy code
extracting abstractions of legacy systems
incremental modernization, reverse engineering, or…
make it cheaper to redesign vs. evolve legacy systems


	Software for the Real World
	Where we are Today
	The Problem
	Modeling “Languages”
	Composing Systems
	Transformations
	Legacy

